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Spoilers
Free lunch: Remove the hierarchy of HNSW for ~30% lower construction 
memory + systems benefits 

Cheap lunch: Reorder the HNSW graph layout to reduce cache misses 
for >20% faster queries + systems benefits 

Doing it in production is easy and can immediately improve performance



Typical search problem

Query

Search results

data points
L1 / L2 distance, 

inner products, etc



Why near neighbor?

Embedding search

- Retrieval-augmented generation (RAG), 
recommender systems (retrieval)

Classification

- Popular ML classifier but poor latency / 
memory

Query

Interesting points 
in context of query



Open source near neighbor projects

graphstreesgraphsclustering hashing

graphs trees graphs graphs



Graphs are high performance

Data from ANN-Benchmarks (Aumüller, et. al. ICSSA 2017)
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In practice, a ton of people just use HNSW...

...sometimes without knowing. 
HNSW is integrated into many 
libraries and is often the 
default choice.



One weird trick to 
improve HNSW

"Down with the Hierarchy: The H in HNSW stands for Hubs"
arXiv 2024



KNN with graphs (high-level)

1. Connect nearby points 2. Add / delete edges 
(based on heuristic)

3. Walk to find neighbors



HNSW: Hierarchical Navigable Small-World Graphs

1. Assign points to levels 

2. Build a KNN graph in each level 

3. Walk along each level, dropping 
down when you're done 

4. Thoroughly explore the bottom



HNSW: Hierarchical Navigable Small-World Graphs

NSW with beam search 
in the bottom level

Greedy search in top levels



The trick: Hierarchical Navigable Small-World Graphs

NSW with beam search 
in the bottom level

Delete the hierarchy!  
Just search in the bottom



The trick works in practice
ANN Benchmarks (1M scale): No search Latency Difference



The trick works in practice
Big-ANN Benchmarks (100M scale): No search Latency Difference



How could this possibly be okay?
If NSW is all you need... 

Why don't we need the hierarchy? 

Does this always work? 

When does hierarchy still make sense?
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HNSW was a big improvement in 2016. What changed?

Do we need the hierarchy for "insurance?"



How could this possibly be okay?
If NSW is all you need... 

Why don't we need the hierarchy? 

Does this always work? 

When does hierarchy still make sense?

HNSW was a big improvement in 2016. What changed?

Do we need the hierarchy for "insurance?"

We think we (finally) have the answers



Hub-Highway Hypothesis



The Hub-Highway Hypothesis
Hypothesis: In high dimensions, 𝑘-NN proximity graphs naturally form a 
highway routing structure.



Hubs in space
Hub: A point that is close to many other points. 

– A mid-point, center of a cluster, center of a KNN graph

Hubs

A toy KNN graph

Hubs

A toy dataset
Ideas from "Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data" Radovanovic et. al.

Hubs



As dimension increases, we see more hubs. Why?
Intuition: uniform distribution in a (hyper) cube

Low dimension High dimension

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al. 



As dimension increases, we see more hubs. Why?
Intuition: uniform distribution in a (hyper) cube

Low dimension High dimension

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al. 

More points near 
boundary / corners



As dimension increases, we see more hubs. Why?
Intuition: uniform distribution in a (hyper) cube

Low dimension High dimension

Hubs

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al. 



The Hub-Highway Hypothesis
Hypothesis: In high dimensions, 𝑘-NN proximity graphs naturally form a 
highway routing structure.



Demonstrating the HHH
Okay cool. Prove it. 

1. Beam search visits some nodes way more 
often than others - these are the "hubs." 

2. The hubs are connected to each other, 
forming a highway-feeder structure. 

3. Queries take the "hub highway" early in 
search, to arrive at the neighborhood of the 



Skewness of the Node Access Distribution

This implies that 
beam search 
visits certain 
nodes (the 
“hubs”) way more 
often than the rest



Connectivity of the Highway Feeders
Hub nodes are not only 
frequently accessed, they 
are also very well 
connected

"Down with the Hierarchy: 
The H in HNSW stands for 
Hubs"
arXiv 2024



Connectivity of the Highway Feeders
Hub nodes are not only 
frequently accessed, they 
are also very well 
connected

"Down with the Hierarchy: 
The H in HNSW stands for 
Hubs"
arXiv 2024



Queries tend to take the “hub highway” early in the Search

Partitioned bins = 
proportion of Hub nodes 

visited at a particular stage 
during search.



How could this possibly be okay?
If NSW is all you need... 

Why don't we need the hierarchy? 

Does this always work? 

When does the hierarchy still make sense?

Today's datasets are higher-dimensional than in 2016 - enough to form 
a long-range network naturally.

It is robust against data that is intrinsically low-dimensional, providing 
"insurance" [1].

[1] Confirmed via personal correspondence with Yury Malkov

Yes, provided the data is high-dimensional.



Another weird trick to 
improve HNSW

"Graph Reordering for Cache-Efficient Near Neighbor Search"
NeurIPS 2022



Where does HNSW spend time?



Where does HNSW spend time?



Details: Ran perf on HNSW and Flatnav for 10K SIFT1B / 
DEEP1B search queries. Source annotation + cache 
counters + stack trace samples. Instrumentation with 
valgrind / cachegrind

Profiling results

25%

30%

40%

~5%

Find start point

Greedy search

~95%      
Beam search

~70%      
Distances

First dimension of the 
distance computation?!



Memory access: the slowest thing on the computer

First dimension of vector

“I want vector 
at address 

0x3A28213A”

1ns
7ns

40ns 100ns

“It wants 
cell #305”



sizeof(Node) > sizeof(cache line), so every node walk is a cache miss! 

Cache is supposed to fix it, but… 
cache line vector size



Don’t Cooperate

Prefetcher is supposed to fix it, but…

Hardware prefetch is dumb Software prefetch is tedious

Predicts this 
& loads this line

Predicts this 
& loads 10 lines

Engineer says 
“TRUST ME  
JUST LOAD IT”

HW Prefetcher says 
“FINE” and flushes the 
cache



Spatial locality helps everyone!

Happy

access 
pattern

kNN 
graphs

But kNN graphs don’t use it.



Solution: Put connected nodes next to each other

How? Analyze breadth-first search under the ideal cache model 

Optimize a “node label vector” for cost 

- P[node] → memory location

Proxy task for 
beam search

Cost = # cache misses

Before After



Optimization Objective (NP hard)

[Literature]:             3-4 somewhat-arbitrary choices of F(P) 

[Our work]:              What is the best objective for KNN search?

P[node] = label

“overlap” score

All label permutations



∑
nodes u,v

u, v ∈ same line

#(links u, v)+#(parents u, v)−f(u, v)

∑
nodes u,v

|P(u) − P(v) | < w

#(links u, v)+#(parents u, v)GO =

CE =

Cache efficiency looks suspiciously similar 
to the G-Order objective [1]

[1] "Speedup graph processing by graph ordering," Wei et. al.

*See our NeurIPS paper for full analysis - there are provable benefits



Reduces query time by 10-40%

Above black line = speedup

Above black line = speedup

Better



Reduces 99th percentile latency by 20%

Better



Reduces cache misses by 50%
Cache Misses (lower = better)



We strongly believe in these tricks.

[1] Bioinformatics researchers have already removed the hierarchy from their 
genome search index and seen -50% query latency and -30% memory. 

[2] The DiskANN team saw -25% query latency from our NeurIPS paper. 

[3] The Lucene team saw -20% query latency and compression benefits from 
graph layout (we believe this is independent of our work - great to see!)

[3]: github.com/apache/lucene/pull/13683
[2]: "OOD-DiskANN: Efficient and Scalable Graph ANNS for Out-of-Distribution Queries"
[1]: alphaxiv.org/abs/2412.01940

http://github.com/apache/lucene/pull/13683
https://www.alphaxiv.org/abs/2412.01940


Current FlatNav Integrations

[1] PyTerrier already integrated a 
vector search retriever based on 
the flatnav python library

https://pyterrier.readthedocs.io/
en/latest/ext/pyterrier-dr/indexing-
retrieval.html#pyterrier_dr.FlexInd
ex.flatnav_retriever

https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940


Do you want to try this stuff out?

Our reference implementation at flatnav.net has everything: 

• Performance parity with HNSW, without hierarchy 
• Implementations for the best reordering methods 
• Codebase in C++17 (Header-only library) 
• Easy-to-use Python bindings

http://flatnav.net

