
Optimizing HNSW in the Age of Vector Databases

Blaise Munyampirwa
Argmax

Vihan Lakshman
MIT CSAIL

Benjamin Coleman
Google DeepMind

Spoilers
Free lunch: Remove the hierarchy of HNSW for ~30% lower construction
memory + systems benefits

Cheap lunch: Reorder the HNSW graph layout to reduce cache misses
for >20% faster queries + systems benefits

Doing it in production is easy and can immediately improve performance

Typical search problem

Query

Search results

data points
L1 / L2 distance,

inner products, etc

Why near neighbor?

Embedding search

- Retrieval-augmented generation (RAG),
recommender systems (retrieval)

Classification

- Popular ML classifier but poor latency /
memory

Query

Interesting points
in context of query

Open source near neighbor projects

graphstreesgraphsclustering hashing

graphs trees graphs graphs

Graphs are high performance

Data from ANN-Benchmarks (Aumüller, et. al. ICSSA 2017)

Sp
ee

d

Quality of Results

Bett
er

Graphs
(HNSW)

In practice, a ton of people just use HNSW...

...sometimes without knowing.
HNSW is integrated into many
libraries and is often the
default choice.

One weird trick to
improve HNSW

"Down with the Hierarchy: The H in HNSW stands for Hubs"
arXiv 2024

KNN with graphs (high-level)

1. Connect nearby points 2. Add / delete edges
(based on heuristic)

3. Walk to find neighbors

HNSW: Hierarchical Navigable Small-World Graphs

1. Assign points to levels

2. Build a KNN graph in each level

3. Walk along each level, dropping
down when you're done

4. Thoroughly explore the bottom

HNSW: Hierarchical Navigable Small-World Graphs

NSW with beam search
in the bottom level

Greedy search in top levels

The trick: Hierarchical Navigable Small-World Graphs

NSW with beam search
in the bottom level

Delete the hierarchy!
Just search in the bottom

The trick works in practice
ANN Benchmarks (1M scale): No search Latency Difference

The trick works in practice
Big-ANN Benchmarks (100M scale): No search Latency Difference

How could this possibly be okay?
If NSW is all you need...

Why don't we need the hierarchy?

Does this always work?

When does hierarchy still make sense?

How could this possibly be okay?
If NSW is all you need...

Why don't we need the hierarchy?

Does this always work?

When does hierarchy still make sense?

HNSW was a big improvement in 2016. What changed?

Do we need the hierarchy for "insurance?"

How could this possibly be okay?
If NSW is all you need...

Why don't we need the hierarchy?

Does this always work?

When does hierarchy still make sense?

HNSW was a big improvement in 2016. What changed?

Do we need the hierarchy for "insurance?"

We think we (finally) have the answers

Hub-Highway Hypothesis

The Hub-Highway Hypothesis
Hypothesis: In high dimensions, 𝑘-NN proximity graphs naturally form a
highway routing structure.

Hubs in space
Hub: A point that is close to many other points.

– A mid-point, center of a cluster, center of a KNN graph

Hubs

A toy KNN graph

Hubs

A toy dataset
Ideas from "Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data" Radovanovic et. al.

Hubs

As dimension increases, we see more hubs. Why?
Intuition: uniform distribution in a (hyper) cube

Low dimension High dimension

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al.

As dimension increases, we see more hubs. Why?
Intuition: uniform distribution in a (hyper) cube

Low dimension High dimension

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al.

More points near
boundary / corners

As dimension increases, we see more hubs. Why?
Intuition: uniform distribution in a (hyper) cube

Low dimension High dimension

Hubs

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al.

The Hub-Highway Hypothesis
Hypothesis: In high dimensions, 𝑘-NN proximity graphs naturally form a
highway routing structure.

Demonstrating the HHH
Okay cool. Prove it.

1. Beam search visits some nodes way more
often than others - these are the "hubs."

2. The hubs are connected to each other,
forming a highway-feeder structure.

3. Queries take the "hub highway" early in
search, to arrive at the neighborhood of the

Skewness of the Node Access Distribution

This implies that
beam search
visits certain
nodes (the
“hubs”) way more
often than the rest

Connectivity of the Highway Feeders
Hub nodes are not only
frequently accessed, they
are also very well
connected

"Down with the Hierarchy:
The H in HNSW stands for
Hubs"
arXiv 2024

Connectivity of the Highway Feeders
Hub nodes are not only
frequently accessed, they
are also very well
connected

"Down with the Hierarchy:
The H in HNSW stands for
Hubs"
arXiv 2024

Queries tend to take the “hub highway” early in the Search

Partitioned bins =
proportion of Hub nodes

visited at a particular stage
during search.

How could this possibly be okay?
If NSW is all you need...

Why don't we need the hierarchy?

Does this always work?

When does the hierarchy still make sense?

Today's datasets are higher-dimensional than in 2016 - enough to form
a long-range network naturally.

It is robust against data that is intrinsically low-dimensional, providing
"insurance" [1].

[1] Confirmed via personal correspondence with Yury Malkov

Yes, provided the data is high-dimensional.

Another weird trick to
improve HNSW

"Graph Reordering for Cache-Efficient Near Neighbor Search"
NeurIPS 2022

Where does HNSW spend time?

Where does HNSW spend time?

Details: Ran perf on HNSW and Flatnav for 10K SIFT1B /
DEEP1B search queries. Source annotation + cache
counters + stack trace samples. Instrumentation with
valgrind / cachegrind

Profiling results

25%

30%

40%

~5%

Find start point

Greedy search

~95%
Beam search

~70%
Distances

First dimension of the
distance computation?!

Memory access: the slowest thing on the computer

First dimension of vector

“I want vector
at address

0x3A28213A”

1ns
7ns

40ns 100ns

“It wants
cell #305”

sizeof(Node) > sizeof(cache line), so every node walk is a cache miss!

Cache is supposed to fix it, but…
cache line vector size

Don’t Cooperate

Prefetcher is supposed to fix it, but…

Hardware prefetch is dumb Software prefetch is tedious

Predicts this
& loads this line

Predicts this
& loads 10 lines

Engineer says
“TRUST ME
JUST LOAD IT”

HW Prefetcher says
“FINE” and flushes the
cache

Spatial locality helps everyone!

Happy

access
pattern

kNN
graphs

But kNN graphs don’t use it.

Solution: Put connected nodes next to each other

How? Analyze breadth-first search under the ideal cache model

Optimize a “node label vector” for cost

- P[node] → memory location

Proxy task for
beam search

Cost = # cache misses

Before After

Optimization Objective (NP hard)

[Literature]: 3-4 somewhat-arbitrary choices of F(P)

[Our work]: What is the best objective for KNN search?

P[node] = label

“overlap” score

All label permutations

∑
nodes u,v

u, v ∈ same line

#(links u, v)+#(parents u, v)−f(u, v)

∑
nodes u,v

|P(u) − P(v) | < w

#(links u, v)+#(parents u, v)GO =

CE =

Cache efficiency looks suspiciously similar
to the G-Order objective [1]

[1] "Speedup graph processing by graph ordering," Wei et. al.

*See our NeurIPS paper for full analysis - there are provable benefits

Reduces query time by 10-40%

Above black line = speedup

Above black line = speedup

Better

Reduces 99th percentile latency by 20%

Better

Reduces cache misses by 50%
Cache Misses (lower = better)

We strongly believe in these tricks.

[1] Bioinformatics researchers have already removed the hierarchy from their
genome search index and seen -50% query latency and -30% memory.

[2] The DiskANN team saw -25% query latency from our NeurIPS paper.

[3] The Lucene team saw -20% query latency and compression benefits from
graph layout (we believe this is independent of our work - great to see!)

[3]: github.com/apache/lucene/pull/13683
[2]: "OOD-DiskANN: Efficient and Scalable Graph ANNS for Out-of-Distribution Queries"
[1]: alphaxiv.org/abs/2412.01940

http://github.com/apache/lucene/pull/13683
https://www.alphaxiv.org/abs/2412.01940

Current FlatNav Integrations

[1] PyTerrier already integrated a
vector search retriever based on
the flatnav python library

https://pyterrier.readthedocs.io/
en/latest/ext/pyterrier-dr/indexing-
retrieval.html#pyterrier_dr.FlexInd
ex.flatnav_retriever

https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940

Do you want to try this stuff out?

Our reference implementation at flatnav.net has everything:

• Performance parity with HNSW, without hierarchy
• Implementations for the best reordering methods
• Codebase in C++17 (Header-only library)
• Easy-to-use Python bindings

http://flatnav.net

