Optimizing HNSW in the Age of Vector Databases

Blaise Munyampirwa Vihan Lakshman Benjamin Coleman
Argmax MIT CSAIL Google DeepMind

Spollers

Free lunch: Remove the hierarchy of HNSW for ~30% lower construction
memory + systems benefits

Cheap lunch: Reorder the HNSW graph layout to reduce cache misses
for >20% faster queries + systems benefits

Doing it in production is easy and can immediately improve performance

Typical search problem

O Query
O
data points _
. L1 /L2 distance,
O inner products, etc

Search results

Interesting points
in context of query

Query /

Why near neighbor?

Embedding search

- Retrieval-augmented generation (RAG),
recommender systems (retrieval)

Classification

- Popular ML classifier but poor latency /
memory

Open source near neighbor projects

OYGY

clustering graphs trees graphs

‘ k %

graphs trees graphs graphs

Graphs are

Speed

nigh performance

L'
\
“x&‘\“
a
-,
\N-==’:——< —————————
\\s L
e T - \.\:;:.-:_
N
2
%

A

/.
3% s ri—‘r‘*‘(’{tﬂt

Quality of Results

Data from ANN-Benchmarks (Aumdiller, et. al. ICSSA 2017)

Graphs
(HNSW)

In practice, a ton of people just use HNSW...

Efficient and robust approximate nearest neighbor search using hierarchical
navigable small world graphs

YA Malkov, DA Yashunin
¢ Save UYY Cite JCited by 1702 | Related articles All 12 versions

= nmslib / hnswlib ' Public ...sometimes without knowing.
HNSW is integrated into many
libraries and is often the
default choice.

Header-only C++/python library
58 Apache-2.0 license

e % 673 forks

One weird trick to
improve HNSW

"Down with the Hierarchy: The H in HNSW stands for Hubs"
arxXiv 2024

KNN with graphs (high-level)

1. Connect nearby points 2. Add / delete edges 3. Walk to find neighbors
(based on heuristic)

Q/\T\o/ \. ’k ° \X\ \‘\ / \
\./‘\o\\./ *\/. / > l.\\/.
.//\o—o/ / \o—o/ / <\.§/.

°o—

HNSW: Hierarchical Navigable Small-World Graphs

1. Assign points to levels
2. Build a KNN graph in each level

3. Walk along each level, dropping
down when you're done

4. Thoroughly explore the bottom

HNSW: Hierarchical Navigable Small-World Graphs

Greedy search in top levels

NSW with beam search
in the bottom level

The trick:-Hierarehieal-Navigable Small-World Graphs

Delete the hierarchy!
Just search in the bottom

NSW with beam search
in the bottom level

The trick works in practice
ANN Benchmarks (1M scale): No search Latency Difference

DEEP GIST DEEP GIST
—— HNSW —— HNSW —— HNSW —— HNSW
—»— FlatNav —»— FlatNav —— FlatNav —»— FlatNav
10°
0.75 0.80 0.85 0.90 0.95 1.00 0.5 0.6 0.7 0.8 0.9 1.0 0.75 0.80 0.85 0.90 0.95 1.00 0.5 0.6 0.7 0.8 0.9 1.0
MNIST NY-Times (Angular) MNIST NY-Times (Angular)
iy —e— HNSW 101 S HNSW iy —e— HNSW 101 = HNSW
E —— FlatNav —— FlatNav E —— FlatNav —— FlatNav
= =
o 9
c 100 c
] 10° U 0
- -+~ 100
© ©
| |
o @)
E 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0.6 0.7 0.8 0.9 g 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0.6 0.7 0.8 0.9
SIFT SIFT
—— HNSW —— HNSW

— FlatNav —*— FlatNav

100

0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

Recall (R100@100) Recall (R100@100)

P50 Latency (ms)

The trick works in practice
Big-ANN Benchmarks (100M scale): No search Latency Difference

BigANN-100M Yandex-DEEP-100M BigANN-100M Yandex-DEEP-100M
1
Lot] e HNsw 100 e hnsw —— HNSW 101 == HNSW
—— FlatNav —%— FlatNav 1014 7 FlatNav —— FlatNav
1007 100,
—_ 1004
n 10°1
€
N
075 080 085 090 095 1.00 070 075 0.80 085 090 095 1.00 > 075 080 085 090 095 100 070 075 080 085 090 095 1.00
. SpaceV-100M TTI-100M qc) SpaceV-100M TTI-100M
101
—— HNSW 1014 = HNSW 4?5‘ 104 —— HNSW —— HNSW
—— FlatNav —— FlatNav — —— FlatNav —— FlatNav
m 101.
[@)]
a
100,
100_
100,
100.
070 075 080 085 090 095 06 0.7 08 0.9 070 075 080 085 090 095 06 0.7 038 0.9

Recall (R100@100) Recall (R100@100)

How could this possibly be okay?
If NSW is all you need...

Why don't we need the hierarchy?

Does this always work?

When does hierarchy still make sense?

How could this possibly be okay?
If NSW is all you need...

Why don't we need the hierarchy?
HNSW was a big improvement in 2016. What changed?

Does this always work?

Do we need the hierarchy for "insurance?"

When does hierarchy still make sense?

How could this possibly be okay?
If NSW is all you need...

Why don't we need the hierarchy?

We think we (finally) have the answers

VO we rieca uic rierdreriy 101 imsurdrice

When does hierarchy still make sense?

Hub-Highway Hypothesis

The Hub-Highway Hypothesis

Hypothesis: In high dimensions, k-NN proximity graphs naturally form a

highway routing structure.

® Hubs
- Highways
- Feeders

Hubs in space

Hub: A point that is close to many other points.
— A mid-point, center of a cluster, center of a KNN graph

" :
Hubs)' J>
g x

0
Ve Val Hubs
Hubs
A toy dataset A toy KNN graph

Ideas from "Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data" Radovanovic et. al.

As dimension increases, we see more hubs. Why?

Intuition: uniform distribution in a (hyper) cube

Low dimension High dimension

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al.

As dimension increases, we see more hubs. Why?

Intuition: uniform distribution in a (hyper) cube

More points near
boundary / corners

Low dimension High dimension

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al.

As dimension increases, we see more hubs. Why?

Intuition: uniform distribution in a (hyper) cube

Low dimension High dimension

Example from "The Hubness Phenomenon: Fact or Artifact?" Borgelt et. al.

The Hub-Highway Hypothesis

Hypothesis: In high dimensions, k-NN proximity graphs naturally form a

highway routing structure.

® Hubs
- Highways
- Feeders

Demonstrating the HHH

Okay cool. Prove it.

1. Beam search visits some nodes way more
often than others - these are the "hubs."

2. The hubs are connected to each other,
forming a highway-feeder structure.

3. Queries take the "hub highway" early in
search, to arrive at the neighborhood of the

[

® Hubs
—— Highways
—— Feeders

Skewness of the Node Access Distribution

. : Angular Distance Euclidean Distance
This implies that 10° 9 :
beam search .
visits certain 104
nodes (the > 107
“hubs”) way more 3 ot
)
often than the rest o 10°
Y :
L 10° 4 \
- .~ normal-16 —— normal-1024 1024 —— normal-16 —— normal-1024
10! % normal-32 normal-1536 normal-32 normal-1536
/ —— normal-64 —-— glove-100 —— normal-64 —-— spacev-10M
—— normal-128 - nytimes-256 10ty normal-128 - Yandex-deep-10M
10° A —— normal-256 —— normal-256
1(')° lbl 1(')2 163 10° 1(')1 1(')2 1(')3 1(')4 165

Log Access Count Log Access Count

Connectivity of the Highway Feeders

Hub nodes are not only
frequently accessed, they
are also very well
connected

"Down with the Hierarchy:
The H in HNSW stands for
Hubs"

arXiv 2024

the node access distribution.

Table 5: Two-sample t-test and Mann-Whitney U-test p-
values. Hub nodes are selected using the p99 threshold for

Dataset Dim Mann-Whitney = Two-Sample ¢-Test Effect Size
IID Normal (Angular) 16 0.0006 0.0006 0.1745
IID Normal (L2) 16 <1073 <1073 0.6621
IID Normal (Angular) 32 0.0347 0.0347 0.0972
IID Normal (L2) 32 <1073 <1073 0.8173
IID Normal (Angular) 64 0.0359 0.0417 0.0927
IID Normal (L2) 64 <1073 <1073 0.8725
IID Normal (Angular) 128 0.0093 0.0070 0.1316
IID Normal (L2) 128 <1073 <1073 0.8428
IID Normal (Angular) 256 <1073 <1073 0.3110
IID Normal (L2) 256 <1073 <1073 0.8582
IID Normal (Angular) 1024 0.1472 0.1318 0.0598
IID Normal (L2) 1024 <1073 <1073 0.8314
IID Normal (Angular) 1536 <107 <107 0.2356
IID Normal (L2) 1536 <1073 <1073 0.8568
GloVe 100 <107 <1073 0.7642
NYTimes 256 <107 <107 0.9305
GIST 960 <107 <1073 0.6829
Yandex-DEEP 96 0.0013 0.0013 0.1614
Microsoft-SpaceV 100 0.0011 0.0011 0.1644

Connectivity of the Highway Feeders

Table 5: Two-sample t-test and Mann-Whitney U-test p-
values. Hub nodes are selected using the p99 threshold for
the node access distribution.

Hub nodes are not only
frequently accessed, they
are also very well
connected

"Down with the Hierarchy:
The H in HNSW stands for
Hubs"

arXiv 2024

Dataset Dim Mann-Whitney = Two-Sample ¢-Test Effect Size
IID Normal (Angular) 16 0.0006 0.0006 0.1745
IID Normal (L2) 16 <1073 <1073 0.6621
IID Normal (Angular) 32 0.0347 0.0347 0.0972
IID Normal (L2) 32 <1073 <1073 0.8173
IID Normal (Angular) 64 0.0359 0.0417 0.0927
IID Normal (L2) 64 <1073 <1073 0.8725
IID Normal (Angular) 128 0.0093 0.0070 0.1316
IID Normal (L2) 128 <1073 <1073 0.8428
IID Normal (Angular) 256 <1073 <1073 0.3110
IID Normal (L2) 256 <1073 <1073 0.8582
IID Normal (Angular) 1024 0.1472 0.1318 0.0598
IID Normal (L2) 1024 <1073 <1073 0.8314
IID Normal (Angular) 1536 <107 <107 0.2356
IID Normal (L2) 1536 <1073 <1073 0.8568
GloVe 100 <107 <1073 0.7642
NYTimes 256 <107 <107 0.9305
GIST 960 <107 <1073 0.6829
Yandex-DEEP 96 0.0013 0.0013 0.1614
Microsoft-SpaceV 100 0.0011 0.0011 0.1644

Queries tend to take the “hub highway” early in the Search

v
Partitioned bins = I‘“I‘I‘““ :

proportion of Hub nodes
visited at a particular stage
during search.

percentage of Hub vs Non-Hub Nodes Visited. Dataset: glove-100-angular

Visited. Dataset: gist-960-euclidean
1
Hub Nod:
Non-Hub Node:
804
2
2
S 604
3
3
z
k]
o ac
-3
2
g
3
Bins

ins

it of Hub vs Non-Hub Nodes Visited. Dataset: yandex-deep-10m-euclidean

(c) Microsoft SpaceV (d) Yandex Deep

How could this possibly be okay?
If NSW is all you need...

Why don't we need the hierarchy?

Today's datasets are higher-dimensional than in 2016 - enough to form
a long-range network naturally.

Does this always work? Yes, provided the data is high-dimensional.

When does the hierarchy still make sense?

It is robust against data that is intrinsically low-dimensional, providing
"Insurance" [1].

[1] Confirmed via personal correspondence with Yury Malkov

Another weird trick to
improve HNSW

"Graph Reordering for Cache-Efficient Near Neighbor Search"
NeurlPS 2022

Where does HNSW spend time?

Start

v

® Query

—O— Greedy
O —O— Beam

Where does HNSW spend time?

. Find start point
Profiling results ~

Greedy search —,

~5%

First dimension of the ~959%,

distance computation?! Beam search
~70%
Distances

Details: Ran perf on HNSW and Flatnav for 10K SIFT1B /
DEEP1B search queries. Source annotation + cache
counters + stack trace samples. Instrumentation with
valgrind / cachegrind

Memory access: the slowest thing on the computer

First dimension of vector

l
“l want vector X
at address X “It wants
Ox3A28213A”)(cell #305” 8
||
MMU
Core |<{L1 L2 < L3 |
TLB Cache
Registers
1ns
ns
40ns

100ns

Cache is supposed to fix it, but...

cache line vector size
/
/ \ y
e m — :
.
MMU

Core [efL1 L2 [<> L3 [

TLB Cache
Registers

sizeof(Node) > sizeof(cache line), so every node walk is a cache miss!

Prefetcher is supposed to fix it, but...

Engineer says
“TRUST ME
L— JUST LOAD IT”

O = | O <—__| Predicts this u O = u
— & loads this line

[\ HW Prefetcher says
“FINE” and flushes the
cache

—

Predicts this
& loads 10 lines

Don’t Cooperate

Hardware prefetch is dumb < > Software prefetch is tedious

Spatial locality helps everyone!

T ————— - H appy
e access
pattern
KNN
graphs
But kNN graphs don’t use it.

Solution: Put connected nodes next to each other

How? Analyze breadth-first search under the ideal cache model

| I
Proxy task for

beam search

Cost = # cache misses

77 3 2~ 5

Optimize a “node label vector” for cost \ / \ /

- P[node] — memory location : 1

6 4

/N /N

2 4 6 7

Before After

Optimization Objective (NP hard)

arg min F'(P)

PeP—_ All label permutations

“overlap” score
4/ p

P[node] = label

[Literature]: 3-4 somewhat-arbitrary choices of F(P)

[Our work]: What is the best objective for KNN search?

Cache efficiency looks suspiciously similar
to the G-Order objective [1]

*See our NeurlPS paper for full analysis - there are provable benefits

CE = Z #(links U, v)+#(parents U, v)—f(u, V)

nodes u,v .
u,v € same line

GO = Z #(links u, v)+#(parents U, v)
nodes u,v

| P(u) — P(v)| <w

[1] "Speedup graph processing by graph ordering," Wei et. al.

Speedup (%)

Reduces query time by 10-40%

DEEP10M

DEEP100M

25
20 A
15 A
10 1 \
\
\
: | B
—— Original Order —— QOriginal Order y ¥V
—— Gorder Above black line = speedup 10{ — Gorder :
014 ——- RCM A ——- RCM = 3
—-= DegSort(in) . | i - —- Degsort (in Abeve black-line =’speedup
IIEE DegSort (out) 04 v DegSort (out) = N —7 er—
HubSort HubSort i
HubCluster HubCluster
~10 -10 4
0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Recall@100

Recall@100

Reduces 99th percentile latency by 20%

SIFT100M
: = QOriginal
——- Gorder //

m

&

>

O 10t Better
C

3

©

— v
o

(a8

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

Recall@100

Reduces cache misses by 50%

Cache Misses (lower = better)

Algorithm L1 (%) L2 (%) L3 (%) TLB (%)

Original 19.53 13.9 6.5 3.8
RCM 17.37 7.61 5.1 2.56

Gorder 14.46 9.6 4.0 2.14

We strongly believe in these tricks.

[1] Bioinformatics researchers have already removed the hierarchy from their
genome search index and seen -50% query latency and -30% memory.

[2] The DiskANN team saw -25% query latency from our NeurlPS paper.

[3] The Lucene team saw -20% query latency and compression benefits from
graph layout (we believe this is independent of our work - great to see!)

[1]: alphaxiv.org/abs/2412.01940

[2]: "OOD-DiskANN: Efficient and Scalable Graph ANNS for Out-of-Distribution Queries"
[3]: github.com/apache/lucene/pull/13683

http://github.com/apache/lucene/pull/13683
https://www.alphaxiv.org/abs/2412.01940

Current FlatNav Integrations

[1] PyTerrier already integrated a
vector search retriever based on
the f1atnav python library

https://pyterrier.readthedocs.io/
en/latest/ext/pyterrier-dr/indexing-

retrieval.html#pyterrier dr.Flexind

ex.flathav retriever

flatnav_retriever(k=32, %, ef_search=100, num_initializations=100,
ef_construction=100, threads=16, num_results=1000, cache=True, gbatch=64,
drop_query_vec=False, verbose=False)

Returns a retriever that searchers over a flatnav index.

RETURN TYPE:

Transformer

PARAMETERS:
o k (int) = the maximum number of edges per document in the index

ef_search (int) - the size of the list during searches. Higher values are slower but more
accurate.

num_initializations (int) — the number of random initializations to use during search.

ef_construction (int) - the size of the list during graph construction. Higher values are
slower but more accurate.

threads (int) — the number of threads to use

num_results (int) - the number of results to return per query

cache (bool) - whether to cache the index to disk

qbatch (int) - the number of queries to search at once

drop_query_vec (bool) — whether to drop the query_vec column after retrieval

verbose (bool) — whether to show progress bars

Added in version 0.4.0.

Changed in version 0.4.1: fixed bug with num_initializations

7" Note

This transformer requires the flatnav package to be installed. Instructions are available in the flatnav
repository.

= Citation

Munyampirwa et al. Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs". arXiv 2024. [link]

https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940
https://www.alphaxiv.org/abs/2412.01940

Do you want to try this stuff out?

Our reference implementation at flatnav.net has everything:

» Performance parity with HNSW, without hierarchy
* Implementations for the best reordering methods
» Codebase in C++17 (Header-only library)

« Easy-to-use Python bindings

http://flatnav.net

